
iOS Integration Guide
This guide is for developers integrating ZenKey with their iOS applications.

1.0 Background

ZenKey is a secure bridge between your users and the apps and services you provide. The
platform is a joint undertaking of the Mobile Authentication Taskforce, a joint venture of the four
major US wireless carriers.

ZenKey leverages encryption technologies in a user's mobile phone and mobile network. The
platform packages multiple factors of authentication into a streamlined experience for app and
website providers, taking advantage of the unique capabilities and insights of the wireless
carriers. It then applies those capabilities to provide an easy and secure way to register, login,
and perform other types of authorizations within apps and services. The result for Service
Providers (SP) is a better user experience and a more secure link to your users.

ZenKey makes integration easy by following the OpenID Connect (OIDC) authentication protocol.

1.1 OpenID Connect

OpenID Connect (OIDC) is an authentication protocol based on the OAuth 2.0 specification. It
uses JSON Web Tokens (JWTs) obtained using OAuth 2.0 flows. The ZenKey SDK uses OIDC to
support developers creating experiences in web and native applications. You can read more
about OIDC here.

1.2 Authorization Flow

ZenKey is simple to use – one method for users to authenticate into all of your apps and
websites.

1.2.1 Authorization on a Primary Device

Users establish their mobile device as their primary device by installing the carrier specific
ZenKey app on that device. After completing a simple initial setup, users are ready to use ZenKey
with third-party applications. Pressing the ZenKey button in a third party app or website from
their primary device starts the authentication process.

Note: This primary device is also the device users can use to authenticate requests from other
devices, such as desktops and tablets. See Section 1.2.2 Authorization on Secondary Devices.

Step 1: The User's Service Provider's mobile app or website makes an authorization code
request to the local ZenKey app.

Step 2: The User's ZenKey app determines the appropriate wireless carrier to perform SIM and
user authentication with and returns an authorization code to your Redirect URI (see section on
Redirect URI).

af://n2
af://n4
af://n8
https://openid.net/specs/openid-connect-core-1_0.html
af://n10
af://n12

Step 3: Because your user has consented to share with you, your backend server may make a
token request for user info or other resources.

1.2.2 Authorization on Secondary Devices

Users can also use ZenKey to authenticate on devices other than their primary device, such as a
tablet. These secondary devices rely on the user to complete the authentication process.

Users pressing the ZenKey button on a secondary device will see a visual and numeric code as a
part of the secondary device authorization process. This code allows the user to associate that
secondary device with their primary device.

Step 1: The user is taken to a website where they can select the appropriate carrier. This is
known as the carrier Discovery UI website, and is where the user chooses the carrier associated
with their primary device. If the user is authorizing a secondary device from an app on a tablet,
the SDK will use a webview for this step.

Step 2: The user then scans the visual code or enters the numeric code into the ZenKey app on
their primary device.

Step 3: Once the user approves the request in the ZenKey app on their primary device, the
carrier Discovery UI website gets redirected to perform authorization with a login_hint_token .

Step 4: Your backend server makes an authorization code request to the appropriate carrier, to
perform SIM and user authentication, and receives the auth code back at your Redirect URI.

Step 5: Because you user has consented to share with you, your backend server may make a
token request for user info or other resources.

1.3 User Data

To create a secure experience, users are only shared via a web request from your secure backend
to the user's carrier's secure backend and includes the user's attributes.

 User information is only shared with Service Providers upon user consent. Users are able to
choose whether to share their data and specifically what data will be shared with you.

2.0 Getting Started

To get started integrating the ZenKey with your applications, there are a few things you should
do:

Register your application - Access the Service Provider portal to register your application and
obtain a valid clientId and clientSecret .

Identify if you need custom redirect URIs - Redirect URIs will be used for callbacks to several
ZenKey services

Identify user information data you want to capture - The ZenKey enrollment process
includes asking for personal user data. The ZenKey service itself does not accumulate the
personal data used for authentication. That data remains secured by the user's wireless
carrier. Encrypted user information is only shared with Service Providers upon subscriber
consent. Users are able to choose whether to share their data and specifically what data will
be shared with each participating Service Provider.

Because applications must get authorization to access user information, "scopes" must
be defined to allow actions. There are various user data scopes already defined in
ZenKey which you can select to be captured during the enrollment process. Examples

af://n18
af://n26
af://n29

of these are email address, name and phone number. The scopes are used to verify
users. OpenID is the only required scope and is added by default on every request. All
others are optional depending on the needs of your application.

Decide to require PIN and/or Biometric - You can choose if you'd like to require the user to
authenticate with a PIN and/or a biometric from their primary device (e.g. finger print, facial
recognition, etc). In your setup, you can choose to have an experience with or without
requiring both a PIN or biometric.

Note: For Pre-Release: set up Git Access - While the SDK is under development (Pre-Release), we
recommend maintaining the Provider SDK source code as a git submodule. If that is not possible,
download the source here and place it in your project directory.

3.0 Add the ZenKey SDK

From the Service Provider Portal, add the ZenKey SDK to your project. Review the various
components as noted in this README.

To integrate ZenKey with your application project by:

Using CocoaPods,
Adding the SDK source to your Xcode project manually

NOTE: Use of Carthage for development is not currently supported.

3.1 Using CocoaPods

You can include the ZenKey SDK in your project as a development CocoaPod. After you place the
source code in your project directory, add the following code to your Podfile.

3.2 Adding the SDK Source Manually to the Project Directory

To add the SDK source manually to your Xcode project:

1. Move the ZenKey SDK source directly to the project directory.
2. Add ZenKeySDK.xcodeproj to your application's Xcode project.
3. After adding the project, confirm that the deployment targets are less than or equal to your

deployment target.
4. View your project's "Embedded Binaries" under your project's "General" panel. Add the

ZenKeySDK framework. Be sure to select the corresponding framework for the platform you
are targeting (the iOS framework for an iOS target).

5. Build and run the project to ensure that everything is working correctly.

4.0 Configure Client ID and Redirect URI

All Service Providers must add their application's client Id to their Info.plist . Retrieve your
client Id from the ZenKey dashboard and add the following key to your application’s Info.plist :

git submodule add https://git.xcijv.net/sp-sdk/sp-sdk-ios

 pod 'ZenKeySDK', path: '{your-relative-path}/ZenKeySDK.podspec'

 <key>ZenKeyClientId</key>

 <string>{your application's client id}</string>

https://git-scm.com/docs/git-submodule
https://git.xcijv.net/sp-sdk/sp-sdk-ios
af://n45
af://n54
af://n57
af://n70

You also need to configure the redirect URI to be used. The redirect URI is used for callbacks to
the SDK from several ZenKey services. You can use the default, pre-configured URI or create a
custom redirect URI.

The default URI is {your client Id}://com.xci.provider.sdk . Use this URI by adding your
client Id to your Info.plist as a custom scheme:

To create a custom redirect URI, access the Service Provider Portal and follow the instructions.

NOTE: To add an extra layer of security to your integration, we recommend specifying your
redirect URI as a universal link. This requires having the appropriately configured app association
and entitlements. Refer to Apple’s documentation on the topic.

To apply your custom redirect URI, specify the custom scheme, host, and path in the Info.plist
file.

5.0 Instantiate ZenKey

To support ZenKey SDK within your application, you must instantiate ZenKey in the application
delegate as follows:

 <key>CFBundleURLTypes</key>

 <array>

 <dict>

 <key>CFBundleTypeRole</key>

 <string>Editor</string>

 <key>CFBundleURLName</key>

 <string>{your bundle id}</string>

 <key>CFBundleURLSchemes</key>

 <array>

 <string>{your application's client id}</string>

 </array>

 </dict>

 </array>

 <key>ZenKeyCustomHost</key>

 <string>{your universal link's host}</string>

 <key>ZenKeyCustomPath</key>

 <string>{your universal link's full path}</string>

 <key>ZenKeyCustomScheme</key>

 <string>https</string>

import ZenKeySDK

class AppDelegate: UIResponder, UIApplicationDelegate {

 func application(_ application: UIApplication,

 didFinishLaunchingWithOptions launchOptions:

[UIApplicationLaunchOptionsKey: Any]?) -> Bool {

 ZenKeyAppDelegate.shared.application(

 application,

 didFinishLaunchingWithOptions: launchOptions

)

 // Perform additional application setup.

https://developer.apple.com/documentation/uikit/core_app/allowing_apps_and_websites_to_link_to_your_content/enabling_universal_links
af://n80

NOTE: To enable logging for debugging purposes, include the zenKeyOptions parameter and
specify a log level (refer to section 8.1).

6.0 Request Authorization Code

A ZenKey authorization can provide your application with the means to secure a user's
registration, login, or authorization to processing an important transaction. The SDK provides the
branded button ZenKeyAuthorizationButton to automatically submit a request for ZenKey
authorization.

6.1 Add ZenKey Button

Add the ZenKey ZenKeyAuthorizationButton to your UIView.

6.1.1 Dark Button

You can customize the appearance of the button. A dark button style is appropriate to use with
light backgrounds. By default, the ZenKey button uses the dark style. The dark button style looks
like this:

 return true

 }

 func application(_ app: UIApplication,

 open url: URL,

 options: [UIApplication.OpenURLOptionsKey: Any] = [:]) ->

Bool {

 guard !ZenKeyAppDelegate.shared.application(app, open: url, options:

options) else {

 return true

 }

 // Perform any other URL processing your app may need to perform.

 return true

 }

}

import ZenKeySDK

class LoginViewController {

 let zenKeyButton = ZenKeyAuthorizationButton()

 override func viewDidLoad() {

 super.viewDidLoad()

 let scopes: [Scope] = [.openid, .email, .name]

 zenKeyButton.scopes = scopes

 zenKeyButton.delegate = self

 view.addSubview(zenKeyButton)

 }

}

af://n84
af://n86
af://n89

6.1.2 Light Button

A light button style is appropriate to use with dark backgrounds. You can change the style by
setting the button's style property as follows:

The light button style looks like this:

6.1.3 Custom Button or View

Instead of the default ZenKeyAuthorizationButton , you can invoke ZenKey with your own
custom button or view. See the implementation details in section 7.0, "Request Authorization
Code Manually".

6.2 Receive Callbacks

In order to receive the responses from a ZenKey request, implement
ZenKeyAuthorizeButtonDelegate .

 zenKeyButton.style = .light

extension LoginViewController: ZenKeyAuthorizeButtonDelegate {

 func buttonWillBeginAuthorizing(_ button: ZenKeyAuthorizeButton) {

 // perform any ui updates like showing an activity indicator.

 }

 func buttonDidFinish(

 _ button: ZenKeyAuthorizeButton,

 withResult result: AuthorizationResult) {

 // handle the outcome of the request:

 switch result {

 case .code(let authorizedResponse):

 let code = authorizedResponse.code

 let mcc = authorizedResponse.mcc

 let mnc = authorizedResponse.mnc

 // pass these identifiers to your secure server to perform a token

request

 case .error(let authorizationError):

 // There was an error with the authorization request

 case .cancelled:

 // The user cancelled their request in the ZenKey application

 }

 }

af://n92
af://n97
af://n99

6.3 Request Parameters

There are several parameters that you can configure with your authorization request, as noted in
this section.

6.3.1 Scopes

Select each of the userinfo scopes to be added to the authorization request.

NOTE: The .openid scope is required.

For more information, see Scope.swift.

6.3.2 Additional Parameters

Additional parameters that you can configure include:

ACR Values - Authenticator Assurance Levels (AAL) identify the strength of an authentication
transaction. Stronger authentication (i.e., a higher AAL value) requires malicious actors to
have better capabilities and expend greater resources to successfully subvert the
authentication process. The id_token will contain an acr key with the achieved AAL value.

Ask for aal1 when you need a low level of authentication. Users will not be asked for their
pin or biometrics. Any user holding the device will be able to authenticate/authorize the
transaction unless the user has configured their account to always require second factor
authentication (pin | bio).

Ask for aal2 or aal3 when you want to ensure the user has provided their (pin | bio).

Request State - A value provided by you to be returned with the auth_code

Nonce - A number used once. This is any value provided by you and included in the
ID_Token if you requested the openid scope.

Correlation Id - You can pass a correlation_id to be added to the carrier logs. You must
access the ZenKey SP Portal to request any log entries.

Note: Use the same correlation_id for code, token, and userinfo requests. But the carrier
may not enforce this.

Context - You can submit a string to accompany the authorization request in the ZenKey
application. For example, a bank transfer may prompt the user: "Do you want to authorize a
$200 transfer to your checking account?". The best practice is that a server-initiated request
should contain a context parameter for a user to understand the reason for the interaction.
The maximum size is <280> characters. Any request with a context that is too large will
result in an OIDC error (i.e., an invalid request).

Prompt - The user needs to approve a transaction with each request.

prompt=login At login, prompt the user to authenticate again.
prompt=consent Prompt the user to explicitly re-confirm access to their personal data
(the carrier recaptures user consent for listed scopes).

For more information about each of these parameters and instructions on how to use them, view
the documentation for ZenKeyAuthorizeButton . There is also more information on the
enumerated values in PromptValue.swift .

}

 let scopes: [Scope] = [.openid, .email, .name]

af://n102
af://n104
https://git.xcijv.net/sp-sdk/sp-sdk-ios/blob/develop/ZenKeySDK/Sources/Core/Scope.swift
af://n109
af://n135

7.0 Request Authorization Code Manually

You can perform a manual authorization request by configuring AuthorizationService .
Pass the code and associated identifiers to your secure server to complete the token request
flow.

Refer to:

Submodules
ZenKey

8.0 Error Handling

AuthorizationError defines the code , description and errorType to help the developer
debug the error or present a description to the user. The errorType is of type ErrorType which
identifies a class of error during the Authorization flow, such as invalidRequest or
requestDenied . When creating a recovery suggestion or diagnosing an issue, the error's code
and description can help provide context and a possible remedy.

The developer can include further information, with code adding context for the origin of the
error, description a possible explanation and possible remedy.

The following table summarizes the AuthorizationError error types and potential recovery
suggestions for each.

import ZenKeySDK

class LoginViewController {

 let authService = AuthorizationService()

 func loginWithZenKey() {

 // in response to some UI, perform an authorization using the

AuthorizationService

 let scopes: [Scope] = [.openid, .email, .name]

 authService.authorize(

 scopes: scopes,

 fromViewController: self) { result in

 switch result {

 case .code(let authorizedResponse):

 let code = authorizedResponse.code

 let mcc = authorizedResponse.mcc

 let mnc = authorizedResponse.mnc

 // pass these identifiers to your secure server to perform a

token request

 case .error:

 // Error is returned identity provider

 case .cancelled:

 // The user cancelled request in ZenKey application.

 }

 }

 }

}

af://n135
https://git-scm.com/docs/git-submodule
https://git.xcijv.net/sp-sdk/sp-sdk-ios
af://n144

Error Type (Case) Possible Cause How to Remedy

invalidRequest
The request made
is invalid.

Check the parameters passed to the
authorization call.

requestDenied
The request was
denied by the
user or carrier.

Display an appropriate feedback message to
the user.

requestTimeout
The request has
timed out.

Display an appropriate feedback message,
such as "Unable to reach the server, please
try again" or "Poor network connection."

serverError
There was an
error on the
server.

Please try again later.

networkFailure

There was a
problem
communicating
over the network.

Advise the user to check their connection and
try again.

configurationError
There is an error
configuring the
SDK.

Check your local code configuration with the
configuration on the Service Provider Portal.

discoveryStateError
There is an
inconsistency with
the user's state.

Try to perform the authorization request
again.

unknownError
An unknown error
has occurred.

If the problem persists, contact support.

8.1 Debugging

It is possible to enable logging by passing a value for the .logLevel key to the zenKeyOptions
parameter in the ZenKeyAppDelegate . For more information on the options, see the
Log.LogLevel type as shown below.

/// Pass a log level to the ZenKey launch options to enable logging for use

during debugging.

public struct Log {

 static private(set) var logLevel: Level = .off

 public enum Level: Int {

 case off, error, warn, info, verbose

 var name: String {

 switch self {

 case .off:

 return ""

 case .warn:

 return "warn"

 case .error:

af://n185

Date Version Description

9.9.2019 0.9.12 Added minor edits.

8.29.2019 0.9.11 Updating verbiage and instructions

8.27.2019 0.9.10 Updated high-level flows; Updated sample code.

Add d i b Add d i i hi Add d ddi i l

9.0 Next Steps

On your secure server, perform discovery and use the discovered token endpoint to request an
access token from ZenKey with the processes already detailed:

Auth Code
MCC (Mobile Country Code)
MNC (Mobile Network Code)
Redirect URI

The token should be used as the basis for accessing or creating a token within the domain of
your application. After you exchange the authorization code for an authorization token on your
secure server, you will be able to access the ZenKey userinfo endpoint, which will pass
information through your server's authenticated endpoints as defined by your application.

Information on setting up your secure server can be found in the "ZenKey Server and Web
Integration Guide".

Support

For technical questions, contact support.

Proprietary and Confidential

NOTICE: © 2019 XCI JV, LLC. ZENKEY IS A TRADEMARK OF XCI JV, LLC. ALL RIGHTS RESERVED. XCI
JV, LLC PROPRIETARY AND CONFIDENTIAL.THE INFORMATION CONTAINED HEREIN IS NOT AN
OFFER, COMMITMENT, REPRESENTATION OR WARRANTY AND IS SUBJECT TO CHANGE.
CONFIDENTIAL MATERIAL DISCLOSED FOR REVIEW ONLY AS PERMITTED UNDER THE MUTUAL
NONDISCLOSURE AGREEMENT. NO RECIPIENT MAY DISCLOSE,DISTRIBUTE, OR POST THIS
DOCUMENT WITHOUT XCI JV, LLC’S EXPRESS WRITTEN AUTHORIZATION.

Revision History

 return "error"

 case .info:

 return "info"

 case .verbose:

 return "verbose"

 }

 }

 }

 static func configureLogger(level: Level) {

 logLevel = level

 }

af://n188
af://n201
mailto:techsupport@mobileauthtaskforce.com
af://n203
af://n205

Date Version Description8.20.2019 0.9.9
Added section numbers; Added revision history; Added additional
info about Redirect URIs to section 4.0

 Last Update: Document Version 0.9.12 - September 9, 2019

	iOS Integration Guide
	1.0 Background
	1.1 OpenID Connect
	1.2 Authorization Flow
	1.2.1 Authorization on a Primary Device
	1.2.2 Authorization on Secondary Devices

	1.3 User Data

	2.0 Getting Started
	3.0 Add the ZenKey SDK
	3.1 Using CocoaPods
	3.2 Adding the SDK Source Manually to the Project Directory

	4.0 Configure Client ID and Redirect URI
	5.0 Instantiate ZenKey
	6.0 Request Authorization Code
	6.1 Add ZenKey Button
	6.1.1 Dark Button
	6.1.2 Light Button
	6.1.3 Custom Button or View

	6.2 Receive Callbacks
	6.3 Request Parameters
	6.3.1 Scopes
	6.3.2 Additional Parameters

	7.0 Request Authorization Code Manually
	8.0 Error Handling
	8.1 Debugging

	9.0 Next Steps
	Support
	Proprietary and Confidential
	Revision History

